
www.manaraa.com

Haystack: A Platform for Authoring End User Semantic Web Applications
Dennis Quan, David Huynh, David R. Karger

MIT AI Laboratory/LCS, 200 Technology Square, Cambridge, MA 02139 USA

{dquan,dfhuynh,karger}@ai.mit.edu

1. OVERVIEW
The Web fulfilled a practical need of users in allowing them to
conveniently author, browse and share content online. Similarly,
we believe that Semantic Web technologies will be more quickly
proliferated if they can prove to be directly useful to end users.
The Haystack project [5] brings the Semantic Web to end users by
leveraging key Semantic Web technologies that allow users to
easily manage their documents, e-mail messages, appointments,
tasks, etc. The Haystack user interface is capable of visualizing a
variety of different types of information, including e-mails, to-do
items, news feeds, and web page bookmarks.

The way in which the Haystack interface is constructed gives few
clues to the notion that the underlying data model is represented
using the Resource Description Framework (RDF)—the standard
data representation language of the Semantic Web. Presenting
information in a manner familiar and intuitive to users is key, as
few users are familiar with ontological vocabulary and descriptive
logic. In other words, end user Semantic Web applications need to
be developed in such a way that users need not even be aware that
the Semantic Web is involved!

In support of this cause, Haystack has been built as an extensible
platform that allows various kinds of functionality to be devel-
oped easily and independently, and incorporated seamlessly. We
wish to make the authoring of RDF-based content and Haystack
features that act on such content as easy as authoring HTML web
content. In this paper we describe the tools Haystack provides to
Semantic Web developers for building end user applications
based on RDF.

2. RELATED WORK
We believe that the availability of tools for prototyping and build-
ing programs that both produce content for and render content
from the Semantic Web can help to improve the reception of Se-
mantic Web technologies. The current generation of tools repre-
sents the first step in this direction in that they expose program-
ming interfaces for manipulating information. Toolkits for gener-
ating, processing, and visualizing graphs of RDF data are widely
available on most platforms [6]. Tools for editing data according
to specific ontologies, such as Ont-O-Mat and Protégé, give
knowledge engineers powerful tools for creating and manipulating
data that corresponds to specific schemata [2] [4]. Furthermore,
server-side software packages have been developed to help users
aggregate RDF information for presentation to users [7].

Building on these toolkits, Haystack exposes functionality to users
for interacting with information at higher levels of abstraction.
Rather than exposing information as a series of RDF statements,
Haystack concentrates on the concepts important to users of that
information: documents, messages, properties, annotations, etc.

3. ADENINE
In a system such as Haystack, a sizeable amount of code—both in
agents and in user interface components—is devoted to the crea-
tion and manipulation of RDF-encoded metadata. We have devel-
oped a language called Adenine that is specifically suited to ma-
nipulating RDF through special syntactic and runtime support.
Adenine supports standard programming constructs such as for
loops and statically-scoped variable bindings, in some respects
resembling a version of Python with native support for RDF data
types built in.

Like Lisp, Adenine is both a data definition language and an im-
perative programming language. RDF statements can be described
in a syntax similar to Notation3 [1]. Pieces of executable Adenine
code are called methods, which are named by URIs and can have
RDF properties. Like Lisp functions, Adenine methods are also
representable in the data language; the Adenine ontology de-
scribes a way to encode the execution of an Adenine method as a
series of instruction resources linked by “next instruction” predi-
cates. More information about Adenine can be found on our web
site (http://haystack.lcs.mit.edu/) and in previous work [5].

4. AGENTS AND SERVICES
In the past, programs that aggregated data from multiple sources,
such as mail merge or customer relationship management soft-
ware, had to be capable of speaking numerous protocols with
different back-ends to generate their results. With a rich corpus of
information such as that present in a user’s Haystack, the possibil-
ity for automation becomes significant because services and
agents can now be written against a single unified abstraction.
(We will use “service” and “agent” interchangeably in this docu-
ment, as both are autonomous, running entities that are capable of
receiving and sending messages in Haystack.) Furthermore, agents
can be written to help users deal with problem such as information
overload by extracting key information from e-mail messages and
other documents and presenting the user with summaries.

Agents in Haystack are callable entities that expose methods and
maintain state. The core agents are mostly written in Java, but
some are written in Adenine and some in Python (these agents are
hosted by the Jython interpreter). We utilize an RDF ontology
derived from WSDL for describing the interfaces to agents as well
as for noting which server processes hosts which agents. As a
consequence, we are able to support different protocols for com-
municating between agents, from simply passing in-process Java
objects around to using HTTP-based RPC mechanisms such as
HTTP POST and SOAP. In other words, Haystack agents are in
effect Web services that implement a specific Java interface and
where the appropriate WSDL metadata has been entered into the
store; the system takes care of exposing agents via whatever pro-
tocols are supported.

5. SLIDE ONTOLOGY
Haystack uses RDF to, among other things, model the user inter-
face. At the bottommost layer is the Slide ontology, which allows

Copyright is held by the author/owner(s).
WWW 2003, May 20-24, 2003, Budapest, Hungary.
ACM xxx.

www.manaraa.com

the developer to specify the appearance and formatting of user
interface elements such as buttons, paragraphs of text, and tables.
Slide is modeled after HTML and, like HTML, is assembled in a
tree structure (expressible in RDF since trees are graphs). Adenine
is used to hook up executable code to events such as mouse
clicks. Individual Slide elements are described as RDF resources
and are rendered to the screen by Java components.

There are two key benefits to our RDF representation over
HTML. First, we feel that the way in which data that conforms to
an RDF schema should be presented is just as important as the
schema itself. Slide, in conjunction with Adenine and other user
interface concepts discussed later, enables RDF to be used to
describe both a schema and its ideal mode of presentation. Sec-
ond, the Slide ontology is extensible; one needs simply to add an
RDF description of a new Slide element to the RDF store in order
for the component to be supported. In fact, we have support for
writing components completely in Adenine, providing a pure
RDF-based solution for distributing presentation logic.

6. VIEWS
Our user interface architecture uses the Slide ontology to present
information in terms of views. Specifically, a view is a component
that displays certain types of resources in a particular way. A
given RDF class may have any number of different views associ-
ated with it. Furthermore, views are described in RDF, allowing
them to be characterized according to the RDF classes they sup-
port and by the way they display resources (e.g., full screen, in a
one line summary, as an applet, etc.). When a resource needs to be
displayed in Haystack in a certain way, such as full screen, a view
is chosen that possesses the necessary characteristics.

As components, views enable pieces of user interface functional-
ity to be reused. The developer of a one line summary view for
contacts (perhaps displaying a person’s name and telephone num-
ber) provides an RDF description to the system that enables de-
velopers that need to display summaries of contacts to reuse the
component. The best example of reuse can be seen in the case of
views that embed views of other resources. For example, a view of
an address book containing contacts and mailing lists needs not
implement views for displaying contacts and mailing lists; the
system provides a way for views to specify that a resource needs
to be displayed at a certain location on the screen in a certain
fashion (e.g., as a one line summary). In this way composite views
can be constructed that leverage the specialized user interface
functionality of the child views that are embedded.

Because the system is responsible for instantiating views and
keeping track of where child views are to be embedded within
parent views, the system can provide default implementations of
certain direct manipulation features for free. A good example is
drag and drop: When the user starts to drag on a view, the system
knows what resource is being represented by that view, such that
when the view is dropped elsewhere in the user interface, the drop
target can be informed of what resource was involved instead of
simply the textual or graphical content of the particular represen-
tation that was dragged.

7. OPERATIONS
Most systems provide some mechanism for exposing prepackaged
functionality that can be applied under specific circumstances. For
example, in Java one can expose methods in a class definition that
perform specific tasks when invoked. In C, one can define func-
tions that accept arguments of particular types. Under Windows,

one can define verbs, which are bound to specific file types and
perform actions such as opening or printing a document when
activated through a context menu in the Windows Explorer shell.
In general, these mechanisms all permit parameterized operations
to be defined and exposed to clients.

In Haystack, the analogous construct is called an operation, which
can accept any number of parameters of certain types and perform
some task. Operations are Adenine methods that expose pieces of
functionality in the user interface. The definition of an operation
includes basic information such as its name, an icon, and a set of
parameters, which is generated automatically by the Adenine
compiler based on the definition of the Adenine method. Parame-
ters are also given names and can have type constraints.

8. CONSTRUCTORS
One particular type of functionality provided by many applica-
tions deserves special focus: object creation. Object creation
manifests itself in many different forms, ranging from the addition
of a text box to a slide in a presentation graphics program to the
composing of an e-mail. Applications that support object creation
usually expose interfaces for allowing users to choose the appro-
priate type of object to create or to find a template or wizard that
can help guide them through the process of creating the object.

In RDF, the process of creation can naïvely be thought of as the
coining of a fresh URI followed by an rdf:type assertion. The
corresponding choice list for creating objects in RDF could be
implemented by displaying a list of all rdfs:Class resources known
by the system. However, there are many issues not addressed by
this solution. The user’s mental model of object creation may map
onto three distinct activities in the programmatic sense: (1) creat-
ing the resource; (2) establishing a default view; (3) population of
the resource with default data. For example, the creation of a pic-
ture album from the perspective of the data model is straightfor-
ward in that a picture album is simply a collection of resources
that happen to be pictures. However, if the user begins viewing
this blank picture album with an address book view, he or she
may believe that the system has created the wrong object. With
respect to the third point, Gamma et al. assert that object creation
can come about in various ways, ranging from straightforward
instantiation to creating objects according to some fixed pattern
[3]. Haystack enables this flexibility with constructors—
operations that initialize a resource instance in some fashion.

9. ACKNOWLEDGMENTS
This work was supported by the MIT-NTT collaboration, the MIT
Oxygen project, a Packard Foundation fellowship, and IBM.

10. REFERENCES
[1] Berners-Lee, T. Primer: Getting into RDF & Semantic Web using N3.

http://www.w3.org/2000/10/swap/Primer.html.
[2] Eriksson, H., Fergerson, R., Shahar, Y., and Musen, M. Automatic Generation

of Ontology Editors. In Proceedings of the 12th Banff Knowledge Acquisition
Workshop, Banff, Alberta, Canada, 1999.

[3] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns. Boston:
Addison Wesley, 1995.

[4] Handschuh, S., Staab, S., and Maedche, A. CREAM—Creating relational
metadata with a component-based ontology-driven annotation framework. Pro-
ceedings of K-CAP ’01.

[5] Huynh, D., Karger, D., and Quan, D. “Haystack: A Platform for Creating,
Organizing and Visualizing In-formation Using RDF.” Semantic Web Work-
shop, The Eleventh World Wide Web Conference 2002 (WWW2002).

[6] Pietriga, E. IsaViz. http://www.w3.org/2001/11/IsaViz/.
[7] Stojanovic, N., Maedche, A., Staab, S., Studer, R., Sure, Y. SEAL: a frame-

work for developing SEmantic PortALs. Proceedings of the international con-
ference on Knowledge capture 2001.

